Submillisecond unfolding kinetics of apomyoglobin and its pH 4 intermediate.

نویسندگان

  • M Jamin
  • S R Yeh
  • D L Rousseau
  • R L Baldwin
چکیده

Submillisecond mixing experiments and tryptophan fluorescence spectroscopy are used to address two questions raised in earlier stopped-flow studies of the folding and unfolding kinetics of sperm whale apomyoglobin. A study of the pH 4 folding intermediate (I) revealed, surprisingly, that its folding and unfolding kinetics are measurable and fit the two-state model except for a possible burst phase in unfolding. Submillisecond mixing experiments confirm the unfolding burst phase and show that its properties are consistent with the recently discovered interconversion between two forms of I, Ia equilibrium Ib. In urea-induced unfolding, Ib is converted to Ia before Ia unfolds, and the unfolding kinetics of Ia fit the two-state model when the burst phase is assigned to Ib-->Ia. The second question is whether the Ia, Ib intermediates accumulate transiently when the native protein (N) unfolds to the acid unfolded form (U). Earlier work showed that Ia and Ib accumulate when U refolds to N at pH 6.0 and the results fit the linear folding pathway U equilibrium Ia equilibrium Ib equilibrium N. We report here that either or both Ia and Ib accumulate transiently when N unfolds to U at pH 2.7 and that the position of the rate-limiting step in the pathway changes between unfolding at pH 2. 7 and refolding at pH 6.0. In unfolding as in refolding, we do not detect a fast track that bypasses the Ia, Ib intermediates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The pKa of His-24 in the folding transition state of apomyoglobin.

In native apomyoglobin, His-24 cannot be protonated, although at pH 4 the native protein forms a molten globule folding intermediate in which the histidine residues are readily protonated. The inability to protonate His-24 in the native protein dramatically affects the unfolding/refolding kinetics, as demonstrated by simulations for a simple model. Kinetic data for wild type and for a mutant la...

متن کامل

Evidence for a Shared Mechanism in the Formation of Urea-Induced Kinetic and Equilibrium Intermediates of Horse Apomyoglobin from Ultrarapid Mixing Experiments.

In this study, the equivalence of the kinetic mechanisms of the formation of urea-induced kinetic folding intermediates and non-native equilibrium states was investigated in apomyoglobin. Despite having similar structural properties, equilibrium and kinetic intermediates accumulate under different conditions and via different mechanisms, and it remains unknown whether their formation involves s...

متن کامل

Collapse and search dynamics of apomyoglobin folding revealed by submillisecond observations of alpha-helical content and compactness.

The characterization of protein folding dynamics in terms of secondary and tertiary structures is important in elucidating the features of intraprotein interactions that lead to specific folded structures. Apomyoglobin (apoMb), possessing seven helices termed A-E, G, and H in the native state, has a folding intermediate composed of the A, G, and H helices, whose formation in the submillisecond ...

متن کامل

A simple three - dimensional - focusing , continuous - flow mixer for the study of fast protein dynamics 3

We present a simple, yet flexible microfluidic mixer with a demonstrated mixing time as short as 80 ms that is widely accessible because it is made of commercially available parts. To simplify the study of fast protein dynamics, we have developed an inexpensive continuous-flow microfluidic mixer, requiring no specialized equipment or techniques. The mixer uses three-dimensional, hydrodynamic fo...

متن کامل

A simple three-dimensional-focusing, continuous-flow mixer for the study of fast protein dynamics.

We present a simple, yet flexible microfluidic mixer with a demonstrated mixing time as short as 80 μs that is widely accessible because it is made of commercially available parts. To simplify the study of fast protein dynamics, we have developed an inexpensive continuous-flow microfluidic mixer, requiring no specialized equipment or techniques. The mixer uses three-dimensional, hydrodynamic fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 292 3  شماره 

صفحات  -

تاریخ انتشار 1999